Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Qing-Xiang Liu* and Hai-bin Song

State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: qxliu@eyou.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in main residue
R factor $=0.040$
$w R$ factor $=0.083$
Data-to-parameter ratio $=11.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

9-Oxo-10-diphenylphosphinoylanthracene

In the title anthraquinone derivative, $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P}$, the dihedral angle of the two benzene rings is $30.2(1)^{\circ}$. The diphenylphosphinoyl unit lies out of the plane of the tricyclic core.

Comment

The design of fluorescent chemosensors is an aspect of supramolecular chemistry (de Silva et al., 1997). Many of these fluorescent sensors containing an anthracene ring system have been designed and investigated (Wang et al., 2002). The fluorescence intensity of compounds with anthracene chromophores can be effectively modulated by introducing substituents (Luigi \& Antonio, 1995). We report here the synthesis and crystal structure of 9-oxo-10-diphenylphosphinoylanthracene, (2).

(1)

(2) air

(2)
(9-Anthracenemethyl)propylamine, (1), was reacted with diphenylphosphorus chloride to afford a yellow powder of (2). Compound (2) has a structure analogous to anthraquinone

Figure 1
A view of (2), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Both disorder components are shown.

Received 23 February 2005
Accepted 3 March 2005
Online 27 April 2005
(Fig. 1). The dihedral angle of the two benzene rings is 30.2 (1) ${ }^{\circ}$. The diphenylphosphinoyl unit lies out of the plane of the tricyclic core. The distances $\mathrm{P} 1-\mathrm{O} 1, \mathrm{P} 1-\mathrm{C} 1$ and $\mathrm{O} 2-\mathrm{C} 8$ are 1.480 (18), 1.858 (3) and 1.220 (4) \AA, respectively. The bond angles $\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$ and $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 14$ are 115.9 (3) and $112.9(3)^{\circ}$, respectively.

Experimental

Diphenylphosphorus chloride ($0.904 \mathrm{~g}, 4.10 \mathrm{mmol}$) was added dropwise to a benzene solution of (9-anthracenemethyl)propylamine $(1.00 \mathrm{~g}, 4.02 \mathrm{mmol})$ under nitrogen in an ice-water bath. After stirring for 5 h , the solution was warmed to room temperature and stirring was continued for 2 h in air. The solvent was removed in vacuo to afford a yellow powder of (2) $(0.839 \mathrm{~g}, 53 \%$; m.p. 467$469 \mathrm{~K}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.31\left(d, J_{\mathrm{H}-\mathrm{P}}=30 \mathrm{~Hz}, \mathrm{H}, \mathrm{CH}\right)$, $7.01(d, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhH}), 7.24(t, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhH}), 7.39-7.53$ $(m, 8 \mathrm{H}, \mathrm{PhH}$ and ArH$), 7.68(t, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 8.00(d, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$). ${ }^{31} \mathrm{P}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 36.5$. Analysis calculated for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P}$: C 79.18, H 19.15%; found: C 78.76, H 19.32%. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $1665(\mathrm{C}=\mathrm{O}), 1599,1439,1309,1179,1117$, 931, 788, 755, 723, 694, 564.

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P}$
$M_{r}=394.38$
Orthorhombic, $P c a 2_{1}$
$a=19.386(6) \AA \AA^{2}$
$b=5.5840(15) \AA$
$c=17.928(5) \AA$
$V=1940.7(10) \AA^{3}$
$Z=4$
$D_{x}=1.350 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 543 reflections
$\theta=2.1-25.0^{\circ}$
$\mu=0.16 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.953, T_{\text {max }}=0.968$
7475 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.083$
$S=0.95$
3286 reflections
296 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0329 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}{ }^{\circ}\right.$).

$\mathrm{P} 1-\mathrm{O} 1$	$1.4803(18)$	$\mathrm{O} 2-\mathrm{C} 8$	$1.220(4)$
$\mathrm{P} 1-\mathrm{C} 1$	$1.858(3)$		
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 14$	$112.9(3)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$115.9(3)$

All H atoms were initially located in a difference Fourier map and then placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-$ $0.98 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The phenyl rings are disordered

Figure 2
A view, down the b axis, of the packing arrangement in the crystal structure.
over two positions each and were refined as ideal hexagons, with $\mathrm{C}-$ C $=1.39 \AA$ and equal occupancy.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

This project was supported by Nankai University Personnel Division (No. P02016).

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Luigi, F. \& Antonio, P. (1995). Chem. Soc. Rev. pp. 197-202.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Silva, A. P. de, Gunaratne, H. Q. N., Gunnlaugssin, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T. \& Rice, T. E. (1997). Chem. Rev. 97, 1515-1566.

Wang, K. Z., Gao, L. H., Bai, G. Y. \& Jin, L. P. (2002). Inorg. Chem. Commun. 5, 841-843.

